Search results for "isospin symmetry"

showing 8 items of 8 documents

Strong-interaction Isospin-symmetry Breaking Within the Density Functional Theory

2015

The conventional Skyrme interaction is generalized by adding zero-range charge-symmetry-breaking and charge-independence-breaking terms, and the corresponding energy density functional is derived. It is shown that the extended model accounts for experimental values of mirror and triplet displacement energies (MDEs and TDEs) in sd-shell isospin triplets with, on average, about 100~keV precision using only two additional adjustable coupling constants. Moreover, the model is able to reproduce, for the first time, the A=4n versus A=4n+2 staggering of the TDEs.

PhysicsCoupling constantta114Nuclear TheoryEnergy density functionalStrong interactiontiheysfunktionaaliteoriaFOS: Physical sciencesGeneral Physics and AstronomySkyrme interactionDisplacement (vector)Nuclear Theory (nucl-th)isospin symmetryExtended modelIsospinQuantum mechanicsDensity functional theoryisospin symmetry breakingSymmetry breakingdensity functional theory
researchProduct

Transition probabilities in 31P and 31S : A test for isospin symmetry

2021

International audience; Excited states in the mirror nuclei 31P and 31S were populated in the 1p and 1n exit channels of the reaction 20Ne + 12C, at a beam energy of 33 MeV. The 20Ne beam was delivered for the first time by the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. Angular correlations of coincident γ-rays and Doppler-shift attenuation lifetime measurements were performed using the multi-detector array GASP in conjunction with the EUCLIDES charged particle detector. In the observed B(E1) strengths, the isoscalar component, amounting to 24% of the isovector one, provides strong evidence for breaking of the isospin symmetry in the A=31 mass region. Self-consistent bey…

Nuclear and High Energy PhysicsLifetime measurementIsoscalarQC1-999Lifetime measurementslifetime measurements[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesResonance (particle physics)Isospin symmetrytransition probabilitiesNuclear physicsMicroscopic multiphonon modelMirror nucleimirror nuclei0103 physical sciencesMirror nucleiIsospin symmetry; Lifetime measurements; Microscopic multiphonon model; Mirror nuclei; Transition probabilities010306 general physicsmirrorTransition probabilitiesPhysicsIsovector010308 nuclear & particles physicsPhysics31SCharge (physics)31PSymmetry (physics)Charged particleisospin symmetryIsospinmicroscopic multiphonon modelnucleiydinfysiikka
researchProduct

Isospin-symmetry breaking in masses of ≃ Nuclei

2018

Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the d…

Nuclear and High Energy PhysicsParticle physicsprotonitNuclear TheoryTriplet displacement energy (TDE)01 natural sciencesComputer Science::Digital LibrariesDisplacement (vector)Energy density functional (EDF)Proton–neutron mixingproton–neutron mixingnuclear physicstiheysmirror displacement energy (MDE)0103 physical sciencesCoulombSymmetry breaking010306 general physicsnuclear density functional theory (DFT)density functional theoryLine (formation)Physicsdensityenergiata114protons010308 nuclear & particles physicsScatteringtiheysfunktionaaliteorianeutronsneutronitenergy density functional (EDF)lcsh:QC1-999Symmetry (physics)Isospin symmetry breaking (ISB)Isospintriplet displacement energy (TDE)isospin symmetry breaking (ISB)ydinfysiikkaMirror displacement energy (MDE)Parametrizationlcsh:PhysicsenergyPhysics Letters
researchProduct

No-core configuration-interaction model for the isospin- and angular-momentum-projected states

2016

[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Metho…

Angular momentumNuclear TheoryNuclear TheoryFOS: Physical sciencesrotational symmetry7. Clean energy01 natural sciencesNuclear Theory (nucl-th)Quantum mechanics0103 physical sciencesNeutronno-core-configuration-interaction (NCCI) modelNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCoupling constantta114010308 nuclear & particles physicsNuclear shell modelParity (physics)Configuration interactionisospin symmetryQuantum electrodynamicsIsospinnucleiSlater determinantPhysical Review C
researchProduct

Spectroscopy of 70Kr and isospin symmetry in the T = 1 f pg shell nuclei

2016

International audience; The recoil-β tagging technique has been used in conjunction with the 40 Ca(32 S ,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2 + and, tentatively, 4 + states in the nucleus 70 Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J = 0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectat…

nuclear shell modelsisospin symmetrynuclear structure[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]krypton
researchProduct

Beta-Decay Studies in N ≈ Z Nuclei Using No-Core Configuration-Interaction Model

2015

The no-core configuration-interaction model based on the isospin- and angular-momentum projected density functional formalism is introduced. Two applications of the model are presented: (i) determination of spectra of 0+ states in 62Zn and (ii) determination of isospin-symmetry-breaking corrections to superallowed β-decay between isobaric-analogue 0+ states in 38Ca and 38K. It is shown that, without readjusting a single parameter of the underlying Skyrme interaction, in all three nuclei, the model reproduces the 0+ spectra surprisingly well. peerReviewed

Nuclear Theorysuperallowed Fermi β-decaytiheysfunktionaaliteoriaisospin symmetry breakingNuclear Experimentconfiguration-interaction model
researchProduct

Mirror energy differences above the 0f7/2 shell: First γ-ray spectroscopy of the Tz = −2 nucleus 56Zn

2021

5 pags., 4 figs.

Nuclear and High Energy Physicssinkki (metallit)QC1-999Nuclear Theory01 natural sciencesnucleon removalmirror nuclei0103 physical sciencesSubatomic Physicsmedicine010306 general physicsSpectroscopyradioactive ion beamsNuclear ExperimentNucleonsPhysics[PHYS]Physics [physics]isotoopitValence (chemistry)Isovector010308 nuclear & particles physicsYrastPhysicsFísicaSymmetry Breakingmedicine.anatomical_structureisospin symmetryshell-model calculationsExcited stateEnergy DifferenceAtomic physicsMultipole expansionydinfysiikkaNucleusBeam (structure)
researchProduct

Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer RIGA-TRAP

2011

The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard $^{12}\mathrm{C}$. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3--4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are dis…

Nuclear reactionNuclear and High Energy PhysicsBinding energyRESONANCE NEUTRON-CAPTURE[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryNUCLEAR-STRUCTURE01 natural sciencesBeta-decay stable isobarsNuclear physics0103 physical sciencesNuclidePhysics::Atomic PhysicsSU(4) SYMMETRY010306 general physicsNuclear ExperimentSEPARATION ENERGIESPhysicsIsotopeCARBON CLUSTERS010308 nuclear & particles physicsCarbon-12ISOSPIN SYMMETRYRAMSEY METHODGAMMAPenning trapISOTOPESATOMIC MASS
researchProduct